M463 Homework 13

Enrique Areyan
 July 10, 2013

On average, one cubic inch of Granma's cookie dough contains 2 chocolate chips and 1 marshmallow.
a) Granma makes a cookie using three cubic inches of her dough. Find the chance that the cookie contains at most four chocolate chips. State your assumptions.

Solution: Suppose that no two chocolate chips are in exactly the same point and that each point has the same (small) probability of having a chocolate chip. Let $X=$ number of chocolate chips on a cookie made using 3 cubic inches of dough. Then

$$
X \sim \operatorname{Pois}\left(\mu=\frac{2 \text { choc. chips }}{1 \text { inch }^{3}} \cdot 3 \text { inch }^{3}=6\right)
$$

Hence, $P(X \leq 4)=P(X=0$ OR $X=1$ OR $X=2$ OR $X=3$ OR $X=4)=e^{-6}\left(\frac{6^{0}}{0!}+\frac{6^{1}}{1!}+\frac{6^{2}}{2!}+\frac{6^{3}}{3!}+\frac{6^{4}}{4!}+\right)=$ $115 e^{-6}=0.29$
b) Assume the number of marshmallows in Granma's dough is independent of the number of chocolate chips. I take three cookies, one of which is made with two cubic inches of dough, the other two with three cubic inches each. What is the chance that at most 1 of my cookies contains neither chocolate chips nor marshmallows?

Solution: Let $X_{c i}=$ number of chocolate chips on cookie i. Likewise, let $X_{m i}=$ number of marshmallows on cookie i. Then, $X_{c 1} \sim \operatorname{Pois}(4)$ and $X_{c 2}, X_{c 3} \sim \operatorname{Pois}(6)$. Also, $X_{m 1} \sim \operatorname{Pois}(2)$ and $X_{m 2}, X_{m 3} \sim \operatorname{Pois}(3)$. Finally, let $Y_{i}=X_{c i}+X_{m i}$ be the number of chocolate chips and marshmallows in cookie i. Since the sum of independent Poisson variables is also Poisson we have that $Y_{1} \sim \operatorname{Pois}(6)$ and $Y_{2}, Y_{3} \sim \operatorname{Pois}(9)$. We wish to know the following probability:
$P($ at most 1 of my cookies contains neither chocolate chips nor marshmallows $)=$
$P\left(Y_{1}=0, Y_{2}>0, Y_{3}>0\right)+P\left(Y_{1}>0, Y_{2}=0, Y_{3}>0\right)+P\left(Y_{1}>0, Y_{2}>0, Y_{3}=0\right)+P\left(Y_{1}>0, Y_{2}>0, Y_{3}>0\right)=$ $P\left(Y_{1}=0\right) P\left(Y_{2}>0\right) P\left(Y_{3}>0\right)+P\left(Y_{1}=0\right) P\left(Y_{2}>0\right) P\left(Y_{3}>0\right)+P\left(Y_{1}=0\right) P\left(Y_{2}>0\right) P\left(Y_{3}>\right.$ $0)+P\left(Y_{1}=0\right) P\left(Y_{2}>0\right) P\left(Y_{3}>0\right)=$

$$
e^{-6}\left(1-e^{-9}\right)^{2}+\left(1-e^{-6}\right) e^{-9}\left(1-e^{-9}\right)+\left(1-e^{-6}\right)\left(1-e^{-9}\right) e^{-9}+\left(1-e^{-6}\right)\left(1-e^{-9}\right)^{2}=
$$

$$
\left(1-e^{-9}\right)^{2}+2\left(1-e^{-6}\right)\left(1-e^{-9}\right) e^{-9}
$$

